Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Front Med (Lausanne) ; 9: 824994, 2022.
Article in English | MEDLINE | ID: covidwho-2239158

ABSTRACT

Background: It is known that acute cor pulmonale (ACP) worsens the prognosis of non-coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (NC-ARDS). The ACP risk score evaluates the risk of ACP occurrence in mechanically ventilated patients with NC-ARDS. There is less data on the risk factors and prognosis of ACP induced by COVID-19-related pneumonia. Objective: The objective of this study was to evaluate the prognostic value of ACP, assessed by transthoracic echocardiography (TTE) and clinical factors associated with ACP in a cohort of patients with COVID-19-related pneumonia. Materials and methods: Between February 2020 and June 2021, patients admitted to intensive care unit (ICU) at Amiens University Hospital for COVID-19-related pneumonia were assessed by TTE within 48 h of admission. ACP was defined as a right ventricle/left ventricle area ratio of >0.6 associated with septal dyskinesia. The primary outcome was mortality at 30 days. Results: Among 146 patients included, 36% (n = 52/156) developed ACP of which 38% (n = 20/52) were non-intubated patients. The classical risk factors of ACP (found in NC-ARDS) such as PaCO2 >48 mmHg, driving pressure >18 mmHg, and PaO2/FiO2 < 150 mmHg were not associated with ACP (all P-values > 0.1). The primary outcome occurred in 32 (22%) patients. More patients died in the ACP group (n = 20/52 (38%) vs. n = 12/94 (13%), P = 0.001). ACP [hazards ratio (HR) = 3.35, 95%CI [1.56-7.18], P = 0.002] and age >65 years (HR = 2.92, 95%CI [1.50-5.66], P = 0.002) were independent risk factors of 30-day mortality. Conclusion: ACP was a frequent complication in ICU patients admitted for COVID-19-related pneumonia. The 30-day-mortality was 38% in these patients. In COVID-19-related pneumonia, the classical risk factors of ACP did not seem relevant. These results need confirmation in further studies.

2.
Front Physiol ; 12: 797252, 2021.
Article in English | MEDLINE | ID: covidwho-2142217

ABSTRACT

Acute respiratory distress syndrome (ARDS) is characterized by protein-rich alveolar edema, reduced lung compliance and severe hypoxemia. Despite some evidence of improvements in mortality over recent decades, ARDS remains a major public health problem with 30% 28-day mortality in recent cohorts. Pulmonary vascular dysfunction is one of the pivot points of the pathophysiology of ARDS, resulting in a certain degree of pulmonary hypertension, higher levels of which are associated with morbidity and mortality. Pulmonary hypertension develops as a result of endothelial dysfunction, pulmonary vascular occlusion, increased vascular tone, extrinsic vessel occlusion, and vascular remodeling. This increase in right ventricular (RV) afterload causes uncoupling between the pulmonary circulation and RV function. Without any contractile reserve, the right ventricle has no adaptive reserve mechanism other than dilatation, which is responsible for left ventricular compression, leading to circulatory failure and worsening of oxygen delivery. This state, also called severe acute cor pulmonale (ACP), is responsible for excess mortality. Strategies designed to protect the pulmonary circulation and the right ventricle in ARDS should be the cornerstones of the care and support of patients with the severest disease, in order to improve prognosis, pending stronger evidence. Acute cor pulmonale is associated with higher driving pressure (≥18 cmH2O), hypercapnia (PaCO2 ≥ 48 mmHg), and hypoxemia (PaO2/FiO2 < 150 mmHg). RV protection should focus on these three preventable factors identified in the last decade. Prone positioning, the setting of positive end-expiratory pressure, and inhaled nitric oxide (INO) can also unload the right ventricle, restore better coupling between the right ventricle and the pulmonary circulation, and correct circulatory failure. When all these strategies are insufficient, extracorporeal membrane oxygenation (ECMO), which improves decarboxylation and oxygenation and enables ultra-protective ventilation by decreasing driving pressure, should be discussed in seeking better control of RV afterload. This review reports the pathophysiology of pulmonary hypertension in ARDS, describes right heart function, and proposes an RV protective approach, ranging from ventilatory settings and prone positioning to INO and selection of patients potentially eligible for veno-venous extracorporeal membrane oxygenation (VV ECMO).

3.
J Crit Care ; 72: 154166, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2069287

ABSTRACT

PURPOSE: To evaluate cardiac function in mechanically ventilated patients with COVID-19. MATERIALS AND METHODS: Prospective, cross-sectional multicenter study in four university-affiliated hospitals in Chile. All consecutive patients with COVID-19 ARDS requiring mechanical ventilation admitted between April and July 2020 were included. We performed systematic transthoracic echocardiography assessing right and left ventricular function within 24 h of intubation. RESULTS: 140 patients aged 57 ± 11, 29% female were included. Cardiac output was 5.1 L/min [IQR 4.5-6.2] and 86% of the patients required norepinephrine. ICU mortality was 29% (40 patients). Fifty-four patients (39%) exhibited right ventricle dilation out of whom 20 patients (14%) exhibited acute cor pulmonale (ACP). Eight out of the twenty patients with ACP exhibited pulmonary embolism (40%). Thirteen patients (9%) exhibited left ventricular systolic dysfunction (ejection fraction <45%). In the multivariate analysis acute cor pulmonale and PaO2/FiO2 ratio were independent predictors of ICU mortality. CONCLUSIONS: Right ventricular dilation is highly prevalent in mechanically ventilated patients with COVID-19 ARDS. Acute cor pulmonale was associated with reduced pulmonary function and, in only 40% of patients, with co-existing pulmonary embolism. Acute cor pulmonale is an independent risk factor for ICU mortality.


Subject(s)
COVID-19 , Heart Failure , Pulmonary Embolism , Pulmonary Heart Disease , Respiratory Distress Syndrome , Humans , Female , Male , Pulmonary Heart Disease/etiology , Respiration, Artificial/adverse effects , Critical Illness , Cross-Sectional Studies , Prospective Studies , Pulmonary Embolism/complications , Heart Failure/complications , Respiratory Distress Syndrome/therapy
4.
Heart Lung ; 52: 123-129, 2022.
Article in English | MEDLINE | ID: covidwho-1587702

ABSTRACT

BACKGROUND: Coronavirus disease COVID-19 produces a predominantly pulmonary affection, being cardiac involvement an important component of the multiorganic dysfunction. At the moment there are few reports about the behavior of echocardiographic images in the patients who have the severe forms of the disease. OBJECTIVE: Identify the echocardiographic prognostic markers for death within 60 days in patients hospitalized in intensive care. METHODS: A single-center prospective cohort was made with patients hospitalized in intensive care for COVID-19 confirmed via polymerase chain reaction who got an echocardiogram between May and October 2020. A Cox multivariate model was plotted reporting the HR and confidence intervals with their respective p values for clinical and echocardiographic variables. RESULTS: Out of the 326 patients included, 153 patients got an echocardiogram performed on average 6.8 days after admission. The average age was 60.7, 47 patients (30.7%) were females and 67 (44.7%) registered positive troponin. 91 patients (59.5%) died. The univariate analysis identified TAPSE, LVEF, pulmonary artery systolic pressure, acute cor pulmonale, right ventricle diastolic dysfunction, and right ventricular dilatation as variables associated with mortality. The multivariate model identified that the acute cor pulmonale with HR= 4.05 (CI 95% 1.09 - 15.02, p 0.037), the right ventricular dilatation with HR= 3.33 (CI 95% 1.29 - 8.61, p 0.013), and LVEF with HR= 0.94 (CI 95% 0.89 - 0.99, p 0.020) were associated with mortality within 60 days. CONCLUSIONS: In patients hospitalized in the intensive care unit for COVID-19, the LVEF, acute cor pulmonale and right ventricular dilatation are prognostic echocardiographic markers associated with death within 60 days.


Subject(s)
COVID-19 , Ventricular Dysfunction, Right , Critical Care , Echocardiography , Female , Humans , Prospective Studies , Ventricular Dysfunction, Right/complications
6.
J Cardiothorac Vasc Anesth ; 35(12): 3594-3603, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1033093

ABSTRACT

OBJECTIVE: To compare two-dimensional-speckle tracking echocardiographic parameters (2D-STE) and classic echocardiographic parameters of right ventricular (RV) systolic function in patients with coronavirus disease 2019 (COVID-19)-related acute respiratory distress syndrome (CARDS) complicated or not by acute cor pulmonale (ACP). DESIGN: Prospective, between March 1, 2020 and April 15, 2020. SETTING: Intensive care unit of Amiens University Hospital (France). PARTICIPANTS: Adult patients with moderate-to-severe CARDS under mechanical ventilation for fewer than 24 hours. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Tricuspid annular displacement (TAD) parameters (TAD-septal, TAD-lateral, and RV longitudinal shortening fraction [RV-LSF]), RV global longitudinal strain (RV-GLS), and RV free wall longitudinal strain (RVFWLS) were measured using transesophageal echocardiography with a dedicated software and compared with classic RV systolic parameters (RV-FAC, S' wave, and tricuspid annular plane systolic excursion [TAPSE]). RV systolic dysfunction was defined as RV-FAC <35%. Twenty-nine consecutive patients with moderate-to-severe CARDS were included. ACP was diagnosed in 12 patients (41%). 2D-STE parameters were markedly altered in the ACP group, and no significant difference was found between patients with and without ACP for classic RV parameters (RV-FAC, S' wave, and TAPSE). In the ACP group, RV-LSF (17% [14%-22%]) had the best correlation with RV-FAC (r = 0.79, p < 0.001 v r = 0.27, p = 0.39 for RVGLS and r = 0.28, p = 0.39 for RVFWLS). A RV-LSF cut-off value of 17% had a sensitivity of 80% and a specificity of 86% to identify RV systolic dysfunction. CONCLUSIONS: Classic RV function parameters were not altered by ACP in patients with CARDS, contrary to 2D-STE parameters. RV-LSF seems to be a valuable parameter to detect early RV systolic dysfunction in CARDS patients with ACP.


Subject(s)
COVID-19 , Pulmonary Heart Disease , Ventricular Dysfunction, Right , Adult , Humans , Prospective Studies , Pulmonary Heart Disease/diagnostic imaging , Pulmonary Heart Disease/etiology , SARS-CoV-2 , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Dysfunction, Right/etiology , Ventricular Function, Right
7.
Int J Infect Dis ; 104: 108-110, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-988033

ABSTRACT

Existing literature highlights the fact that patients with COVID-19 exhibit alterations in the coagulation process and are associated with respiratory and cardiovascular diseases, including acute respiratory distress syndrome and acute cor pulmonale. In this report, we describe the effects of systemic thrombolysis on acute cor pulmonale in a patient suffering from COVID-19. We demonstrated that systemic thrombolysis successfully improved the hemodynamics of our patient and resulted in a prominent reduction in hypercapnia, alveolar dead space, and ventilatory ratio.


Subject(s)
COVID-19/complications , Heart Failure/drug therapy , Respiratory Distress Syndrome/drug therapy , SARS-CoV-2/physiology , Thrombolytic Therapy , Tissue Plasminogen Activator/therapeutic use , Acute Disease , Aged , COVID-19/virology , Heart Failure/diagnostic imaging , Heart Failure/etiology , Humans , Male , Recombinant Proteins , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/etiology
8.
CASE (Phila) ; 4(6): 474-476, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-764329
9.
JACC Case Rep ; 2(9): 1311-1314, 2020 Jul 15.
Article in English | MEDLINE | ID: covidwho-599457

ABSTRACT

Coronavirus disease-19 (COVID-19)-related severe acute respiratory distress syndrome can lead to acute cor pulmonale. We report a case of acute cor pulmonale secondary to severe COVID-19 acute respiratory distress syndrome diagnosed with transesophageal echocardiography. Almitrine infusion allowed rapid enhancement of right ventricular function as well as improvement in oxygenation. (Level of Difficulty: Intermediate.).

SELECTION OF CITATIONS
SEARCH DETAIL